Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Clin Nutr ; 42(12): 2353-2362, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37862821

RESUMO

OBJECTIVE: Human energy expenditure and substrate oxidation are under circadian control and food intake is a time cue for the human biological clock, leading to 24h feeding-fasting cycles in energy and substrate metabolism. In recent years, (intermittent) fasting protocols have also become popular to improve metabolic health. Here, we aimed to investigate the impact of food intake on the 24h patterns of energy metabolism as well as to provide data on the timeline of changes in energy metabolism that occur upon an extended period of fasting. RESEARCH DESIGN AND METHODS: In a randomized, cross-over design, twelve healthy males underwent a 60h fast which was compared to a 60h fed condition. In the fed condition meals were provided at energy balance throughout the study. Conditions were separated by a two week period of habitual diet. Volunteers resided in a respiration chamber for the entire 60h to measure energy expenditure and substrate oxidation hour by hour. Volunteers performed a standardized activity protocol while in the chamber. Blood samples were drawn after 12, 36 and 60h. RESULTS: Immediately following the breakfast meal (in the fed condition), fat oxidation became higher in the fasted condition compared to the fed condition and remained elevated throughout the study period. The initial rapid increase in fat oxidation corresponded with a decline in the hepatokine activin A (r = -0.86, p = 0.001). The contribution of fat oxidation to total energy expenditure gradually increased with extended abstinence from food, peaking after 51h of fasting at 160 mg/min. Carbohydrate oxidation stabilized at a low level during the second day of fasting and averaged around 60 mg/min with only modest elevations in response to physical activity. Although 24h energy expenditure was significantly lower with prolonged fasting (11.0 ± 0.4 vs 9.8 ± 0.2 and 10.9 ± 0.3 vs 10.3 ± 0.3 MJ in fed vs fasting, day 2 and 3 respectively, p < 0.01), the 24h fluctuations in energy expenditure were comparable between the fasted and fed condition. The fluctuations in substrate oxidation were, however, significantly (p < 0.001 for both carbohydrate and fat oxidation) altered in the fasted state, favouring fat oxidation. CONCLUSIONS: Energy expenditure displays a day-night rhythm, which is independent of food intake. In contrast, the day-night rhythm of both carbohydrate and fat oxidation is mainly driven by food intake. Upon extended fasting, the absolute rate of fat oxidation rapidly increases and keeps increasing during a 60h fast, whereas carbohydrate oxidation becomes progressively diminished. TRIAL REGISTRATION: www.trialregister.nl NTR 2042.


Assuntos
Metabolismo Energético , Jejum , Masculino , Humanos , Estudos Cross-Over , Metabolismo Energético/fisiologia , Oxirredução , Periodicidade , Carboidratos
2.
Obesity (Silver Spring) ; 31(10): 2493-2504, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37670579

RESUMO

OBJECTIVE: Insulin resistance is characterized by ectopic fat accumulation leading to cardiac diastolic dysfunction and nonalcoholic fatty liver disease. The objective of this study was to determine whether treatment with the peroxisome proliferator-activated receptor-α (PPARα) agonist ciprofibrate has direct effects on cardiac and hepatic metabolism and can improve insulin sensitivity and cardiac function in insulin-resistant volunteers. METHODS: Ten insulin-resistant male volunteers received 100 mg/d of ciprofibrate and placebo for 5 weeks in a randomized double-blind crossover study. Insulin-stimulated metabolic rate of glucose (MRgluc) was measured using dynamic 18 F-fluorodeoxyglucose-positron emission tomography (18 F-FDG-PET). Additionally, cardiac function, whole-body insulin sensitivity, intrahepatic lipid content, skeletal muscle gene expression, 24-hour blood pressure, and substrate metabolism were measured. RESULTS: Whole-body insulin sensitivity, energy metabolism, and body composition were unchanged after ciprofibrate treatment. Ciprofibrate treatment decreased insulin-stimulated hepatic MRgluc and increased hepatic lipid content. Myocardial net MRgluc tended to decrease after ciprofibrate treatment, but ciprofibrate treatment had no effect on cardiac function and cardiac energy status. In addition, no changes in PPAR-related gene expression in muscle were found. CONCLUSIONS: Ciprofibrate treatment increased hepatic lipid accumulation and lowered MRgluc, without affecting whole-body insulin sensitivity. Furthermore, parameters of cardiac function or cardiac energy status were not altered upon ciprofibrate treatment.


Assuntos
Resistência à Insulina , Insulina , Masculino , Humanos , PPAR alfa , Estudos Cross-Over , Hipoglicemiantes , Músculo Esquelético , Fluordesoxiglucose F18 , Lipídeos
3.
Physiol Rep ; 11(12): e15734, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37340318

RESUMO

Mitochondria are organelles that fuel cellular energy requirements by ATP formation via aerobic metabolism. Given the wide variety of methods to assess skeletal muscle mitochondrial capacity, we tested how well different invasive and noninvasive markers of skeletal muscle mitochondrial capacity reflect mitochondrial respiration in permeabilized muscle fibers. Nineteen young men (mean age: 24 ± 4 years) were recruited, and a muscle biopsy was collected to determine mitochondrial respiration from permeabilized muscle fibers and to quantify markers of mitochondrial capacity, content such as citrate synthase (CS) activity, mitochondrial DNA copy number, TOMM20, VDAC, and protein content for complex I-V of the oxidative phosphorylation (OXPHOS) system. Additionally, all participants underwent noninvasive assessments of mitochondrial capacity: PCr recovery postexercise (by 31 P-MRS), maximal aerobic capacity, and gross exercise efficiency by cycling exercise. From the invasive markers, Complex V protein content and CS activity showed the strongest concordance (Rc = 0.50 to 0.72) with ADP-stimulated coupled mitochondrial respiration, fueled by various substrates. Complex V protein content showed the strongest concordance (Rc = 0.72) with maximally uncoupled mitochondrial respiration. From the noninvasive markers, gross exercise efficiency, VO2max , and PCr recovery exhibited concordance values between 0.50 and 0.77 with ADP-stimulated coupled mitochondrial respiration. Gross exercise efficiency showed the strongest concordance with maximally uncoupled mitochondrial respiration (Rc = 0.67). From the invasive markers, Complex V protein content and CS activity are surrogates that best reflect skeletal muscle mitochondrial respiratory capacity. From the noninvasive markers, exercise efficiency and PCr recovery postexercise most closely reflect skeletal muscle mitochondrial respiratory capacity.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Masculino , Humanos , Adulto Jovem , Adulto , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio
4.
Sci Rep ; 13(1): 8346, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221197

RESUMO

Cardiac energy status, measured as phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio with 31P-Magnetic Resonance Spectroscopy (31P-MRS) in vivo, is a prognostic factor in heart failure and is lowered in cardiometabolic disease. It has been suggested that, as oxidative phosphorylation is the major contributor to ATP synthesis, PCr/ATP ratio might be a reflection of cardiac mitochondrial function. The objective of the study was to investigate whether PCr/ATP ratios can be used as in vivo marker for cardiac mitochondrial function. We enrolled thirty-eight patients scheduled for open-heart surgery in this study. Cardiac 31P-MRS was performed before surgery. Tissue from the right atrial appendage was obtained during surgery for high-resolution respirometry for the assessment of mitochondrial function. There was no correlation between the PCr/ATP ratio and ADP-stimulated respiration rates (octanoylcarnitine R2 < 0.005, p = 0.74; pyruvate R2 < 0.025, p = 0.41) nor with maximally uncoupled respiration (octanoylcarnitine R2 = 0.005, p = 0.71; pyruvate R2 = 0.040, p = 0.26). PCr/ATP ratio did correlate with indexed LV end systolic mass. As no direct correlation between cardiac energy status (PCr/ATP) and mitochondrial function in the heart was found, the study suggests that mitochondrial function might not the only determinant of cardiac energy status. Interpretation should be done in the right context in cardiac metabolic studies.


Assuntos
Trifosfato de Adenosina , Mitocôndrias , Humanos , Fosfocreatina , Ácido Pirúvico
5.
Mol Metab ; 72: 101727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062525

RESUMO

OBJECTIVE: Mitochondrial network dynamics may play role in metabolic homeostasis. Whether mitochondrial network dynamics are involved in adaptations to day-night fluctuations in energy supply and demand is unclear. Here we visualized and quantified the mitochondrial network morphology in human skeletal muscle of young healthy lean and older individuals with obesity over the course of 24 h METHODS: Muscle biopsies taken at 5 timepoints over a 24-hour period obtained from young healthy lean and older metabolically impaired obese males were analyzed for mitochondrial network integrity with confocal laser scanning microscopy. Variation of level of fragmentation over the course of the day were aligned with variation of mitochondrial respiration over the day RESULTS: Young healthy lean individuals displayed a day-night rhythmicity in mitochondrial network morphology, which aligned with the day-night rhythmicity of mitochondrial respiratory capacity, with a more fused network coinciding with higher mitochondrial respiratory capacity. In the older individuals with obesity, the mitochondrial network was more fragmented overall compared to young healthy lean individuals and completely lacked 24 h rhythmicity, which was also true for the mitochondrial respiratory capacity CONCLUSIONS: Our data shows a paralleled rhythmicity between mitochondrial network morphology and mitochondrial oxidative capacity, which oscillates over the course of a mimicked real-life day in human skeletal muscle of young, healthy lean individuals. In older individuals with obesity, the lack of a 24-hour rhythmicity in mitochondrial network connectivity was also aligned with a lack in respiratory capacity. This suggests that 24-hour rhythmicity in mitochondrial network connectivity is a determinant of rhythmicity in mitochondrial respiratory capacity. Thus, restoring mitochondrial network integrity may promote mitochondrial respiratory capacity and hence contribute to blunting the metabolic aberrations in individuals with a disturbed 24-hour rhythmicity in metabolism, like older individuals with obesity.


Assuntos
Músculo Esquelético , Obesidade , Masculino , Humanos , Idoso , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Ritmo Circadiano , Respiração , Biópsia
6.
Nat Commun ; 14(1): 173, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635304

RESUMO

ß2-agonist treatment improves skeletal muscle glucose uptake and whole-body glucose homeostasis in rodents, likely via mTORC2-mediated signalling. However, human data on this topic is virtually absent. We here investigate the effects of two-weeks treatment with the ß2-agonist clenbuterol (40 µg/day) on glucose control as well as energy- and substrate metabolism in healthy young men (age: 18-30 years, BMI: 20-25 kg/m2) in a randomised, placebo-controlled, double-blinded, cross-over study (ClinicalTrials.gov-identifier: NCT03800290). Randomisation occurred by controlled randomisation and the final allocation sequence was seven (period 1: clenbuterol, period 2: placebo) to four (period 1: placebo, period 2: clenbuterol). The primary and secondary outcome were peripheral insulin-stimulated glucose disposal and skeletal muscle GLUT4 translocation, respectively. Primary analyses were performed on eleven participants. No serious adverse events were reported. The study was performed at Maastricht University, Maastricht, The Netherlands, between August 2019 and April 2021. Clenbuterol treatment improved peripheral insulin-stimulated glucose disposal by 13% (46.6 ± 3.5 versus 41.2 ± 2.7 µmol/kg/min, p = 0.032), whereas skeletal muscle GLUT4 translocation assessed in overnight fasted muscle biopsies remained unaffected. These results highlight the potential of ß2-agonist treatment in improving skeletal muscle glucose uptake and underscore the therapeutic value of this pathway for the treatment of type 2 diabetes. However, given the well-known (cardiovascular) side-effects of systemic ß2-agonist treatment, further exploration on the underlying mechanisms is needed to identify viable therapeutic targets.


Assuntos
Clembuterol , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Glucose/metabolismo , Clembuterol/farmacologia , Clembuterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Estudos Cross-Over , Músculo Esquelético/metabolismo
7.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413408

RESUMO

BACKGROUNDAt the onset of exercise, the speed at which phosphocreatine (PCr) decreases toward a new steady state (PCr on-kinetics) reflects the readiness to activate mitochondrial ATP synthesis, which is secondary to Acetyl-CoA availability in skeletal muscle. We hypothesized that PCr on-kinetics are slower in metabolically compromised and older individuals and are associated with low carnitine acetyltransferase (CrAT) protein activity and compromised physical function.METHODSWe applied 31P-magnetic resonance spectroscopy (31P-MRS) to assess PCr on-kinetics in 2 cohorts of volunteers. Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min). Cohort 2 included young (20-30 years) and older (65-80 years) individuals with normal physical activity and older, trained individuals. Previous results of CrAT protein activity and acetylcarnitine content in muscle tissue were used to explore the underlying mechanisms of PCr on-kinetics, along with various markers of physical function.RESULTSPCr on-kinetics were significantly slower in metabolically compromised and older individuals (indicating mitochondrial inertia) as compared with young and older trained volunteers, regardless of in vivo skeletal muscle oxidative capacity (P < 0.001). Mitochondrial inertia correlated with reduced CrAT protein activity, low acetylcarnitine content, and functional outcomes (P < 0.001).CONCLUSIONPCr on-kinetics are significantly slower in metabolically compromised and older individuals with normal physical activity compared with young and older trained individuals, regardless of in vivo skeletal muscle oxidative capacity, indicating greater mitochondrial inertia. Thus, PCr on-kinetics are a currently unexplored signature of skeletal muscle mitochondrial metabolism, tightly linked to functional outcomes. Skeletal muscle mitochondrial inertia might emerge as a target of intervention to improve physical function.TRIAL REGISTRATIONNCT01298375 and NCT03666013 (clinicaltrials.gov).FUNDINGRM and MH received an EFSD/Lilly grant from the European Foundation for the Study of Diabetes (EFSD). VS was supported by an ERC starting grant (grant 759161) "MRS in Diabetes."


Assuntos
Carnitina O-Acetiltransferase , Diabetes Mellitus Tipo 2 , Humanos , Carnitina O-Acetiltransferase/metabolismo , Acetilcarnitina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Fosfocreatina/metabolismo
8.
Geroscience ; 45(1): 569-589, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36242693

RESUMO

Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.


Assuntos
Terapia por Exercício , Exercício Físico , Humanos , Idoso , Estudos Prospectivos , Estudos Retrospectivos , Exercício Físico/fisiologia , Resultado do Tratamento
9.
Diabetologia ; 66(3): 461-471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36316401

RESUMO

AIMS/HYPOTHESIS: We hypothesised that the insulin-sensitising effect of physical activity depends on the timing of the activity. Here, we examined cross-sectional associations of breaks in sedentary time and timing of physical activity with liver fat content and insulin resistance in a Dutch cohort. METHODS: In 775 participants of the Netherlands Epidemiology of Obesity (NEO) study, we assessed sedentary time, breaks in sedentary time and different intensities of physical activity using activity sensors, and liver fat content by magnetic resonance spectroscopy (n=256). Participants were categorised as being most active in the morning (06:00-12:00 hours), afternoon (12:00-18:00 hours) or evening (18:00-00:00 hours) or as engaging in moderate-to-vigorous-physical activity (MVPA) evenly distributed throughout the day. Most active in a certain time block was defined as spending the majority (%) of total daily MVPA in that block. We examined associations between sedentary time, breaks and timing of MVPA with liver fat content and HOMA-IR using linear regression analyses, adjusted for demographic and lifestyle factors including total body fat. Associations of timing of MVPA were additionally adjusted for total MVPA. RESULTS: The participants (42% men) had a mean (SD) age of 56 (4) years and a mean (SD) BMI of 26.2 (4.1) kg/m2. Total sedentary time was not associated with liver fat content or insulin resistance, whereas the amount of breaks in sedentary time was associated with higher liver fat content. Total MVPA (-5%/h [95% CI -10%/h, 0%/h]) and timing of MVPA were associated with reduced insulin resistance but not with liver fat content. Compared with participants who had an even distribution of MVPA throughout the day, insulin resistance was similar (-3% [95% CI -25%, 16%]) in those most active in morning, whereas it was reduced in participants who were most active in the afternoon (-18% [95% CI -33%, -2%]) or evening (-25% [95% CI -49%, -4%]). CONCLUSIONS/INTERPRETATION: The number of daily breaks in sedentary time was not associated with lower liver fat content or reduced insulin resistance. Moderate-to-vigorous activity in the afternoon or evening was associated with a reduction of up to 25% in insulin resistance. Further studies should assess whether timing of physical activity is also important for the occurrence of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Transversais , Exercício Físico , Fígado , Acelerometria
10.
Cell Rep ; 41(11): 111786, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516749

RESUMO

24 h whole-body substrate metabolism and the circadian clock within skeletal muscle are both compromised upon metabolic disease in humans. Here, we assessed the 24 h muscle metabolome by serial muscle sampling performed under 24 h real-life conditions in young, healthy (YH) men versus older, metabolically compromised (OMC) men. We find that metabolites associated with the initial steps of glycolysis and hexosamine biosynthesis are higher in OMC men around the clock, whereas metabolites associated with glutamine-alpha-ketoglutarate, ketone, and redox metabolism are lower in OMC men. The night period shows the largest number of differently expressed metabolites. Both groups demonstrate 24 h rhythmicity in half of the metabolome, but rhythmic metabolites only partially overlap. Specific metabolites are only rhythmic in YH men (adenosine), phase shifted in OMC men (cis-aconitate, flavin adenine dinucleotide [FAD], and uridine diphosphate [UDP]), or have a reduced 24 h amplitude in OMC men (hydroxybutyrate and hippuric acid). Our data highlight the plasticity of the skeletal muscle metabolome over 24 h and large divergence across the metabolic health spectrum.


Assuntos
Relógios Circadianos , Metaboloma , Masculino , Humanos , Músculo Esquelético/metabolismo , Glicólise , Oxirredução , Ritmo Circadiano/fisiologia
11.
Mol Metab ; 66: 101620, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280113

RESUMO

OBJECTIVE: SGLT2 inhibitors increase urinary glucose excretion and have beneficial effects on cardiovascular and renal outcomes; the underlying mechanism may be metabolic adaptations due to urinary glucose loss. Here, we investigated the cellular and molecular effects of 5 weeks of dapagliflozin treatment on skeletal muscle metabolism in type 2 diabetes patients. METHODS: Twenty-six type 2 diabetes mellitus patients were randomized to a 5-week double-blind, cross-over study with 6-8-week wash-out. Skeletal muscle acetylcarnitine levels, intramyocellular lipid (IMCL) content and phosphocreatine (PCr) recovery rate were measured by magnetic resonance spectroscopy (MRS). Ex vivo mitochondrial respiration was measured in skeletal muscle fibers using high resolution respirometry. Intramyocellular lipid droplet and mitochondrial network dynamics were investigated using confocal microscopy. Skeletal muscle levels of acylcarnitines, amino acids and TCA cycle intermediates were measured. Expression of genes involved in fatty acid metabolism were investigated. RESULTS: Mitochondrial function, mitochondrial network integrity and citrate synthase and carnitine acetyltransferase activities in skeletal muscle were unaltered after dapagliflozin treatment. Dapagliflozin treatment increased intramyocellular lipid content (0.060 (0.011, 0.110) %, p = 0.019). Myocellular lipid droplets increased in size (0.03 µm2 (0.01-0.06), p < 0.05) and number (0.003 µm-2 (-0.001-0.007), p = 0.09) upon dapagliflozin treatment. CPT1A, CPT1B and malonyl CoA-decarboxylase mRNA expression was increased by dapagliflozin. Fasting acylcarnitine species and C4-OH carnitine levels (0.4704 (0.1246, 0.8162) pmoles∗mg tissue-1, p < 0.001) in skeletal muscle were higher after dapagliflozin treatment, while acetylcarnitine levels were lower (-40.0774 (-64.4766, -15.6782) pmoles∗mg tissue-1, p < 0.001). Fasting levels of several amino acids, succinate, alpha-ketoglutarate and lactate in skeletal muscle were significantly lower after dapagliflozin treatment. CONCLUSION: Dapagliflozin treatment for 5 weeks leads to adaptive changes in skeletal muscle substrate metabolism favoring metabolism of fatty acid and ketone bodies and reduced glycolytic flux. The trial is registered with ClinicalTrials.gov, number NCT03338855.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Estudos Cross-Over , Acetilcarnitina/metabolismo , Acetilcarnitina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Aminoácidos/metabolismo
12.
Physiol Rep ; 10(16): e15395, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36030401

RESUMO

It is well-known that aerobic exercise training beneficially affects endothelial function as measured by brachial artery flow-mediated vasodilation (FMD). This trial with older sedentary overweight and obese men, therefore, examined the effects of aerobic training on other non-invasive markers of the vasculature, which have been studied in less detail. Seventeen men (67 ± 2 years, BMI: 30.3 ± 2.8 kg/m2 ) participated in this controlled cross-over study. Study participants followed in random order a fully supervised, progressive, aerobic exercise training (three 50-min sessions each week at 70% maximal power) and a no-exercise control period for 8 weeks, separated by a 12-week wash-out period. At the end of each period, endothelial function was assessed by the carotid artery reactivity (CAR) response to a cold pressor test and FMD, and local carotid and regional aortic stiffness by the carotid-to-femoral pulse wave velocity (PWVc-f ). The retinal microvasculature, the serum lipid profile, 24-h ambulatory blood pressure, and 96-h continuous glucose concentrations were also determined. Aerobic training increased CAR from 1.78% to 4.01% (Δ2.23 percentage point [pp]; 95% CI: 0.58, 3.89 pp; p = 0.012) and FMD from 3.88% to 6.87% (Δ2.99 pp; 95% CI: 0.58, 5.41 pp; p = 0.019). The stiffness index ß0 increased by 1.1 (95% CI: 0.3, 1.9; p = 0.012), while PWVc-f did not change. Retinal arteriolar width increased by 4 µm (95% CI: 0, 7 µm; p = 0.041). Office blood pressure decreased, but ambulatory blood pressure, and serum lipid and continuous glucose concentrations did not change. Aerobic exercise training improved endothelial function and retinal arteriolar width in older sedentary overweight and obese men, which may reduce cardiovascular risk.


Assuntos
Artéria Braquial , Rigidez Vascular , Idoso , Monitorização Ambulatorial da Pressão Arterial , Artérias Carótidas , Estudos Cross-Over , Endotélio Vascular , Exercício Físico , Glucose , Humanos , Lipídeos , Masculino , Obesidade , Sobrepeso , Análise de Onda de Pulso , Vasodilatação
13.
Nat Commun ; 13(1): 3508, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717342

RESUMO

Elevations in plasma branched-chain amino acid (BCAA) levels associate with insulin resistance and type 2 diabetes (T2D). Pre-clinical models suggest that lowering BCAA levels improve glucose tolerance, but data in humans are lacking. Here, we used sodium phenylbutyrate (NaPB), an accelerator of BCAA catabolism, as tool to lower plasma BCAA levels in patients with T2D, and evaluate its effect on metabolic health. This trial (NetherlandsTrialRegister: NTR7426) had a randomized, placebo-controlled, double-blind cross-over design and was performed in the Maastricht University Medical Center (MUMC+), the Netherlands, between February 2019 and February 2020. Patients were eligible for the trial if they were 40-75years, BMI of 25-38 kg/m², relatively well-controlled T2D (HbA1C < 8.5%) and treated with oral glucose-lowering medication. Eighteen participants were randomly assigned to receive either NaPB 4.8 g/m²/day and placebo for 2 weeks via controlled randomization and sixteen participants completed the study. The primary outcome was peripheral insulin sensitivity. Secondary outcomes were ex vivo muscle mitochondrial oxidative capacity, substrate oxidation and ectopic fat accumulation. Fasting blood samples were collected to determine levels of BCAA, their catabolic intermediates, insulin, triglycerides, free fatty acids (FFA) and glucose. NaPB led to a robust 27% improvement in peripheral insulin sensitivity compared to placebo (ΔRd:13.2 ± 1.8 vs. 9.6 ± 1.8 µmol/kg/min, p = 0.02). This was paralleled by an improvement in pyruvate-driven muscle mitochondrial oxidative capacity and whole-body insulin-stimulated carbohydrate oxidation, and a reduction in plasma BCAA and glucose levels. No effects were observed on levels of insulin, triglycerides and FFA, neither did fat accumulation in muscle and liver change. No adverse events were reported. These data establish the proof-of-concept in humans that modulating the BCAA oxidative pathway may represent a potential treatment strategy for patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Aminoácidos de Cadeia Ramificada/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Graxos não Esterificados , Glucose/uso terapêutico , Humanos , Insulina , Resistência à Insulina/fisiologia , Triglicerídeos
14.
Int J Sports Physiol Perform ; 17(7): 1054-1060, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361736

RESUMO

PURPOSE: The purpose of this study was to assess the relationship between typical performance tests among elite and professional cyclists when conducted indoors and outdoors. METHODS: Fourteen male cyclists of either UCI (Union Cycliste Internationale) Continental or UCI World Tour level (mean [SD] age 20.9 [2.8] y, mass 68.13 [7.25] kg) were recruited to participate in 4 test sessions (2 indoors and 2 outdoors) within a 14-day period, consisting of maximum mean power testing for durations of 60, 180, 300, and 840 seconds. RESULTS: Across all maximum mean power test durations, the trimmed mean power was higher outdoors compared with indoor testing (P < .05). Critical power was higher outdoors compared with indoors (+19 W, P = .005), while no difference was observed for the work capacity above critical power. Self-selected cadence was 6 rpm higher indoors versus outdoors for test durations of 60 (P = .038) and 300 seconds (P = .002). CONCLUSIONS: These findings suggest that maximal power testing in indoor and outdoor settings cannot be used interchangeably. Furthermore, there was substantial individual variation in the difference between indoor and outdoor maximum mean powers across all time durations, further highlighting the difficulty of translating results from indoor testing to outdoor on an individual level in elite populations.


Assuntos
Ciclismo , Adulto , Fenômenos Biomecânicos , Meio Ambiente , Humanos , Masculino , Adulto Jovem
16.
Sci Rep ; 11(1): 23314, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857871

RESUMO

Despite good adherence to supervised endurance exercise training (EET), some individuals experience no or little improvement in peripheral insulin sensitivity. The genetic and molecular mechanisms underlying this phenomenon are currently not understood. By investigating genome-wide variants associated with baseline and exercise-induced changes (∆) in insulin sensitivity index (Si) in healthy volunteers, we have identified novel candidate genes whose mouse knockouts phenotypes were consistent with a causative effect on Si. An integrative analysis of functional genomic and transcriptomic profiles suggests genetic variants have an aggregate effect on baseline Si and ∆Si, focused around cholinergic signalling, including downstream calcium and chemokine signalling. The identification of calcium regulated MEF2A transcription factor as the most statistically significant candidate driving the transcriptional signature associated to ∆Si further strengthens the relevance of calcium signalling in EET mediated Si response.


Assuntos
Treino Aeróbico , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Resistência Física/genética , Resistência Física/fisiologia , Adulto , Sinalização do Cálcio/genética , Quimiocinas/metabolismo , Feminino , Variação Genética , Voluntários Saudáveis , Humanos , Fatores de Transcrição MEF2/genética , Masculino , Pessoa de Meia-Idade , Transcriptoma , Adulto Jovem
17.
Diabetologia ; 64(12): 2817-2828, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510226

RESUMO

AIMS/HYPOTHESIS: In our current society sedentary behaviour predominates in most people and is associated with the risk of developing type 2 diabetes. It has been suggested that replacing sitting time by standing and walking could be beneficial for individuals with type 2 diabetes but the underlying mechanisms are unknown and direct comparisons with exercise are lacking. Our objective was to directly compare metabolic responses of either sitting less or exercising, relative to being sedentary. METHODS: We performed a randomised, crossover intervention study in 12 overweight women who performed three well-controlled 4 day activity regimens: (1) sitting regimen (sitting 14 h/day); (2) exercise regimen (sitting 13 h/day, exercise 1 h/day); and (3) sitting less regimen (sitting 9 h/day, standing 4 h/day and walking 3 h/day). The primary outcome was insulin sensitivity measured by a two-step hyperinsulinaemic-euglycaemic clamp. We additionally performed metabolomics on muscle biopsies taken before the clamp to identify changes at the molecular level. RESULTS: Replacing sitting time by standing and walking over 4 days resulted in improved peripheral insulin sensitivity, comparable with the improvement achieved by moderate-to-vigorous exercise. Specifically, we report a significant improvement in peripheral insulin sensitivity in the sitting less (~13%) and the exercise regimen (~20%), compared with the sitting regimen. Furthermore, sitting less shifted the underlying muscle metabolome towards that seen with moderate-to-vigorous exercise, compared with the sitting regimen. CONCLUSIONS/INTERPRETATIONS: Replacing sitting time by standing and walking is an attractive alternative to moderate-to-vigorous exercise for improving metabolic health. TRIAL REGISTRATION: ClinicalTrials.gov NCT03912922.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Pós-Menopausa , Postura Sentada , Caminhada/fisiologia
18.
Am J Physiol Endocrinol Metab ; 321(4): E453-E463, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396784

RESUMO

Intramyocellular lipid (IMCL) content is an energy source during acute exercise. Nonesterified fatty acid (NEFA) levels can compete with IMCL utilization during exercise. IMCL content is stored as lipid droplets (LDs) that vary in size, number, subcellular distribution, and in coating with LD protein PLIN5. Little is known about how these factors are affected during exercise and recovery. Here, we aimed to investigate the effects of acute exercise with and without elevated NEFA levels on intramyocellular LD size and number, intracellular distribution and PLIN5 coating, using high-resolution confocal microscopy. In a crossover study, 9 healthy lean young men performed a 2-h moderate intensity cycling protocol in the fasted (high NEFA levels) and glucose-fed state (low NEFA levels). IMCL and LD parameters were measured at baseline, directly after exercise and 4 h postexercise. We found that total IMCL content was not changed directly after exercise (irrespectively of condition), but IMCL increased 4 h postexercise in the fasting condition, which was due to an increased number of LDs rather than changes in size. The effects were predominantly detected in type I muscle fibers and in LDs coated with PLIN5. Interestingly, subsarcolemmal, but not intermyofibrillar IMCL content, was decreased directly after exercise in the fasting condition and was replenished during the 4 h recovery period. In conclusion, acute exercise affects IMCL storage during exercise and recovery, particularly in type I muscle fibers, in the subsarcolemmal region and in the presence of PLIN5. Moreover, the effects of exercise on IMCL content are affected by plasma NEFA levels.NEW & NOTEWORTHY Skeletal muscle stores lipids in lipid droplets (LDs) that can vary in size, number, and location and are a source of energy during exercise. Specifically, subsarcolemmal LDs were used during exercise when fasted. Exercising in the fasted state leads to postrecovery elevation in IMCL levels due to an increase in LD number in type I muscle fibers, in subsarcolemmal region and decorated with PLIN5. These effects are blunted by glucose ingestion during exercise and recovery.


Assuntos
Exercício Físico , Ácidos Graxos não Esterificados/sangue , Resistência à Insulina , Gotículas Lipídicas/metabolismo , Músculo Esquelético/metabolismo , Perilipina-5/metabolismo , Magreza/metabolismo , Adulto , Biomarcadores/sangue , Estudos Cross-Over , Jejum , Seguimentos , Humanos , Metabolismo dos Lipídeos , Masculino , Prognóstico , Adulto Jovem
19.
Adipocyte ; 10(1): 408-411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34402717

RESUMO

Angiotensin converting enzyme-2 (ACE2) is the cell-surface receptor enabling cellular entry of SARS-CoV-2. ACE2 is highly expressed in adipose tissue (AT), rendering AT a potential SARS-CoV-2 reservoir contributing to massive viral spread in COVID-19 patients with obesity. Although rodent and cell studies suggest that the polyphenol resveratrol alters ACE2, human studies are lacking. Here, we investigated the effects of 30-days resveratrol supplementation on RAS components in AT and skeletal muscle in men with obesity in a placebo-controlled cross-over study. Resveratrol markedly decreased ACE2 (~40%) and leptin (~30%), but did neither alter angiotensinogen, ACE and AT1R expression in AT nor skeletal muscle RAS components. These findings demonstrate that resveratrol supplementation reduces ACE2 in AT, which might dampen SARS-CoV-2 spread in COVID-19.


Assuntos
Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Resveratrol/administração & dosagem , Tecido Adiposo/citologia , Enzima de Conversão de Angiotensina 2/genética , COVID-19/patologia , COVID-19/virologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Regulação para Baixo/efeitos dos fármacos , Humanos , Leptina/genética , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Obesidade/patologia , Efeito Placebo , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Resveratrol/farmacologia , SARS-CoV-2/isolamento & purificação
20.
Trends Mol Med ; 27(11): 1033-1044, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417125

RESUMO

With global demographics trending towards an aging population, the numbers of individuals with an age-associated loss of independence is increasing. A key contributing factor is loss of skeletal muscle mitochondrial, metabolic, and contractile function. Recent advances in imaging technologies have demonstrated the importance of mitochondrial morphology and dynamics in the pathogenesis of disease. In this review, we examine the evidence for altered mitochondrial dynamics as a mechanism in age and obesity-associated loss of skeletal muscle function, with a particular focus on the available human data. We highlight some of the areas where more data are needed to identify the specific mechanisms connecting mitochondrial morphology and skeletal muscle dysfunction.


Assuntos
Doenças Metabólicas , Sarcopenia , Idoso , Envelhecimento/patologia , Humanos , Doenças Metabólicas/metabolismo , Dinâmica Mitocondrial , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...